

LOCATION: Penn State Behrend Knowledge Park Erie, PA

Paula K. Schuller

Architectural Engineering Mechanical Option

Advisor: Dr. Freihaut

June 10th, 2017

Building Overview
Information | Existing System
Mechanical Depth
Location | Energy | Plausibility
Acoustical Breadth
Potential Solutions | Conclusion
Electrical Breadth
Energy | Cost | Plausibility
Conclusion

Proposal

- Mechanical Depth
 - Geothermal System

- > Acoustical Breadth
 - Potential Solutions to Existing Noise Problems

- > Electrical Breadth
 - Solar Panel Design

Goals

Building Overview

Information | Existing System
Mechanical Depth
Location | Energy | Plausibility
Acoustical Breadth
Potential Solutions | Conclusion
Electrical Breadth
Energy | Cost | Plausibility
Conclusion

Building Overview

Information | Existing System
Mechanical Depth
Location | Energy | Plausibility
Acoustical Breadth
Potential Solutions | Conclusion
Electrical Breadth
Energy | Cost | Plausibility
Conclusion

Building Overview

Information | Existing System
Mechanical Depth
Location | Energy | Plausibility
Acoustical Breadth
Potential Solutions | Conclusion
Electrical Breadth
Energy | Cost | Plausibility
Conclusion

Building Overview

Information | Existing System
Mechanical Depth
Location | Energy | Plausibility
Acoustical Breadth
Potential Solutions | Conclusion
Electrical Breadth
Energy | Cost | Plausibility
Conclusion

Air Side:

4 RTU's to VAV boxes at each zone

Water Side:

2 gas fired boilers to radiant wall panels and fin tubes

Existing Mechanical System

RTU-XX	LOCATION	MAX CFM	% OA
RTU-1	Left Wing First Floor	13,500	30
RTU-2	Left Wing Second Floor	16,800	26
RTU-3	Right Wing	28,330	20
RTU-4	Secure Lab	3,000	10

Building Overview

Information | Existing System
Mechanical Depth
Location | Energy | Plausibility
Acoustical Breadth
Potential Solutions | Conclusion
Electrical Breadth
Energy | Cost | Plausibility
Conclusion

Annual Electric Cost: \$85,364

Existing Mechanical System

Building Overview
Information | Existing System

Mechanical Depth

Location | Energy | Plausibility
Acoustical Breadth
Potential Solutions | Conclusion
Electrical Breadth
Energy | Cost | Plausibility
Conclusion

Climate Zone 5-A

Ground Temperature

Geothermal System

Ground Source Heat Pump System

- Location
 Erie, PA
- Climate
 Cool and Humid
- Year-round 52 °F

Building Overview
Information | Existing System

Mechanical Depth

Location | Energy | Plausibility
Acoustical Breadth
Potential Solutions | Conclusion
Electrical Breadth
Energy | Cost | Plausibility
Conclusion

Climate Zone 5-A

Cool and Humid

Ground Temperature

Year-round: 52 °F

Geothermal System

Ground Source Heat Pump System

Advantages vs Disadvantages

➤ Open Loop

- Lower initial cost
- Consistent entering water temperature
- Water quality
- Environmental concerns at the discharge location
- Increased well pump usage
- Required discharge location

Closed Loop

- + Control over water quality
- + Less overall maintenance
- + Zero energy consumption from the well pump
- High initial cost
- Large area for system
- Lower entering water temperature

Building Overview
Information | Existing System

Mechanical Depth

Location | Energy | Plausibility
Acoustical Breadth
Potential Solutions | Conclusion
Electrical Breadth
Energy | Cost | Plausibility
Conclusion

Climate Zone 5-A

Cool and Humid

Ground Temperature

Year-round: 52 °F

Geothermal System

Ground Source Heat Pump System

Advantages vs Disadvantages

→ Horizontal System

- Lower initial cost
- Less Effective
- Consumes more energy
- Could freeze depending on system

Vertical System

- + More efficient
- + Consumes less energy
- High initial cost

Closed Loop-Vertical Bore field Ground Source Heat Pump System

Building Overview
Information | Existing System

Mechanical Depth

Location | Energy | Plausibility
Acoustical Breadth
Potential Solutions | Conclusion
Electrical Breadth
Energy | Cost | Plausibility
Conclusion

Bore Field:

64 Boreholes
Potential of 19 more

20' Spacing

Trane Trace Bore Field Results	
Design Flow	153 GPM
Boreholes Required	64
Borehole Depth	400 ft.
Borehole Radius	2.25 in

Building Overview
Information | Existing System

Mechanical Depth

Location | Energy | Plausibility
Acoustical Breadth
Potential Solutions | Conclusion
Electrical Breadth
Energy | Cost | Plausibility
Conclusion

Bore Field:

64 Boreholes
Potential of 19 more

20' Spacing

Trane Trace Bore Field Results	
Design Flow	153 GPM
Boreholes Required	64
Borehole Depth	400 ft.
Borehole Radius	2.25 in

Building Overview
Information | Existing System

Mechanical Depth

Location | Energy | Plausibility
Acoustical Breadth
Potential Solutions | Conclusion
Electrical Breadth
Energy | Cost | Plausibility
Conclusion

Bore Field:

64 Boreholes
Potential of 19 more

20' Spacing

rane Trace Bore Field Results	
Design Flow	153 GPM
Boreholes Required	64
Borehole Depth	400 ft.
Borehole Radius	2.25 in

Building Overview
Information | Existing System

Mechanical Depth

Location | Energy | Plausibility
Acoustical Breadth
Potential Solutions | Conclusion
Electrical Breadth
Energy | Cost | Plausibility
Conclusion

Bore Field:

64 Boreholes
Potential of 19 more

20' Spacing

Trane Trace Bore Fi	eld Results
Design Flow	153 GPM
Boreholes Required	64
Borehole Depth	400 ft.
Borehole Radius	2.25 in

Building Overview
Information | Existing System

Mechanical Depth

Location | Energy | Plausibility
Acoustical Breadth
Potential Solutions | Conclusion
Electrical Breadth
Energy | Cost | Plausibility
Conclusion

Geothermal System Adequate Space Allowance

- ✓ AMIC's Parking Lot
- ✓ Mechanical Room

Geothermal System Equipment

	G	eotherma	l Pump			
Make/ Model	Impeller Size	Motor HP	ВНР	Motor RPM	GPM	Efficiency
Bell and Gossett 1510 Series	9.5"	15	8.75	1750	320	74.5 %

Note: Consistent with existing pump

Building Overview
Information | Existing System

Mechanical Depth

Location | Energy | Plausibility
Acoustical Breadth
Potential Solutions | Conclusion
Electrical Breadth
Energy | Cost | Plausibility
Conclusion

	Emissic	ons	
	CO2 (lbm/year)	SO2 (gm/year)	NOX (gm/year)
Boilers	1,140,698	8,875	1,706
Geothermal	704,524	5,481	1,053

Geothermal System Energy Consumption

Building Overview
Information | Existing System

Mechanical Depth

Location | Energy | Plausibility
Acoustical Breadth
Potential Solutions | Conclusion
Electrical Breadth
Energy | Cost | Plausibility
Conclusion

Geothermal System Cost Comparison

			Cost Com	nparison					
	Location	Туре	Building Area (SF)	Occupancy (people)	Туре	# Boreholes	Ft/bore	Total Feet	GPM
Case Study (2007)	Sandy Valley, OH	Elementary School	78,800	682	Vertical	128	305	39,040	576
AMIC (2016)	Erie, PA	School/University	59,300	592	Vertical	64	400	25,600	492

Case Study:

\$1.6371 million dollars or 11.97 \$/ft-bore

AMIC Mechanical System Initial Cost:

\$1.6 million dollar

Existing System Cost ≈ **Geothermal System Cost**

Building Overview
Information | Existing System

Mechanical Depth

Location | Energy | Plausibility
Acoustical Breadth
Potential Solutions | Conclusion
Electrical Breadth
Energy | Cost | Plausibility
Conclusion

Note:

Geothermal systems increase the ground temperature by 1 to 5 °F over time

Geothermal System Plausibility

> Must Meet Requirements

- Adequate space requirements
- ★ Adequate equipment space

> Should Meet Criteria

- Reduced annual energy consumption
- Reduced annual emissions
- Reduced annual utility Costs
- ★ Reduced initial cost

Geothermal System Conclusion

Therefore a Geothermal System is Plausible

**However it is not plausible on an exiting building.

The redesign costs would not be worth the efforts.

Building Overview
Information | Existing System
Mechanical Depth
Location | Energy | Plausibility

Acoustical Breadth

Potential Solutions | Conclusion

Electrical Breadth

Energy | Cost | Plausibility

Conclusion

AMIC Noise Concerns

Noise Caused by the 4 Rooftop Air Handling Units

- > Air-borne Noise
- > Structure-borne Noise
- > Vibration Noise

Building Overview
Information | Existing System
Mechanical Depth
Location | Energy | Plausibility

Acoustical Breadth

Potential Solutions | Conclusion
Electrical Breadth
Energy | Cost | Plausibility
Conclusion

Air-borne Noise (insertion loss)

Increase the Fiberglass Lining in Ductwork

- Thickness
- Density

Will Reduce:

Total HVAC Duct Noise's Occupant Noise Complaints

*Not feasible to redesign all the ducts in an existing building

Building Overview
Information | Existing System
Mechanical Depth
Location | Energy | Plausibility

Acoustical Breadth

Potential Solutions | Conclusion
Electrical Breadth
Energy | Cost | Plausibility
Conclusion

Structure-borne Noise

*usually largest contributor to buildings noise

Make AMIC's Roof a Floating Floor

Will Reduce:

Total HVAC Noise
Total Building Vibrations
Occupant Noise Complaints

*Not feasible to redesign the roof of an existing building

Building Overview
Information | Existing System
Mechanical Depth
Location | Energy | Plausibility

Acoustical Breadth

Potential Solutions | Conclusion
Electrical Breadth
Energy | Cost | Plausibility
Conclusion

Will Reduce:

Total HVAC Noise
Total Building Vibrations
Occupant Noise Complaints

Will Cost More Money
-Cheaper then other option

Vibration Isolation

Inertial Base For RTU's

Building Overview
Information | Existing System
Mechanical Depth
Location | Energy | Plausibility

Acoustical Breadth

Potential Solutions | Conclusion

Electrical Breadth

Energy | Cost | Plausibility

Conclusion

Conclusion

- Air-borne Noise (insertion loss)
 Too Expensive & Not Plausible
- Structure-borne Noise (floating floor)
 Too Expensive & Not Plausible
- Vibration Noise (inertial base)
 Least Expensive, Plausible
- Alternative Option: Equipment Relocation Expensive (best option preconstruction)

Best Option

Cheapest and Most Plausible Option

Building Overview
Information | Existing System
Mechanical Depth
Location | Energy | Plausibility
Acoustical Breadth
Potential Solutions | Conclusion

Electrical Breadth

Energy | Cost | Plausibility
Conclusion

Initial Concerns:

- Location (sun availability)
- Placement of panels
- Cost (payback)

Solar Panels Location Flat Roof

5,445 SF Potential of 315 Panels

Building Overview Information | Existing System Mechanical Depth Location | Energy | Plausibility Acoustical Breadth Potential Solutions | Conclusion

Electrical Breadth

Energy | Cost | Plausibility Conclusion

Solar Panels

Energy

1000V DC System 327 Solar Panel Sun Power Model SMA 20,000 W inverte

 $V_{oc} = 64.9 \text{ V}$ T= 176.6 mv/°C STC = 25°C Assume Annual Low Temp of -26°C $\Delta T = -51^{\circ}C$

 $\frac{1000V}{64.9 \, V/mod} = 15.4 \, modules \rightarrow 15$

$$AV = \left(-0.1766 \frac{V}{^{\circ}\text{C}}\right) * (-51^{\circ}\text{C}) = 9 \text{ V}$$

$$Max \text{ V}_{oc} = 64.9 \text{ V} + 9 \text{ V} = 73.9 \text{ V}$$

$$\frac{1000V}{73.9 V/mod} = 13.5 modules/string \rightarrow 13$$

$$1 string * (13 modules) * \left(0.327 \frac{\text{kw}}{\text{module}}\right) = 4.25 \text{ kw/string}$$

$$\frac{25 \text{ kw/mv}}{4.25 / \text{string}} = 5.56 \text{ string/inverter } \rightarrow 6 \text{ strings}$$

$$6 * 4.24 \, kw = \left(\frac{25.5 \, \text{kw}}{20 \, \text{kw}}\right) = 1.26$$

6 strings * (13 modules) = 78 modules

$$\frac{315 \max modules}{78 \ module/inverter} = 4.04 \ inverters \rightarrow 4$$

4 inverters * (78 modules) = 312 modules

4 20kw inverter 25.1 kw DC 6 strings of 13 modules 312 Total Modules

SUNPOWER

MORE ENERGY, FOR LIFE?

E-SERIES COMMERCIAL SOLAR PANEL

· 20.4% efficiency

Captures more sunlight and generates more power than conventional panels.

Delivers excellent performance in real world conditions, such as high temperatures, clouds and low light. 1,2,3

Commercial grade

Optimized to maximize returns and energy production, the E-Series panel is a bankable solution for commercial solar applications.

Maxeon® Solar Cells: Fundamentally better. Engineered for performance, designed for reliability.

Engineered for peace of mind

Designed to deliver consistent, trouble-free energy over a very long lifetime. 4.5

Designed for reliability

The SunPower Maxeon Solar Cell is the only cell built on a solid copper foundation. Virtually impervious to the corrosion and cracking that degrade Conventional

#1 Ranked in Fraunhofer durability test. 10 100% power maintained in Atlas 25+ comprehensive PVDI Durability test.11

HIGH PERFORMANCE & EXCELLENT RELIABILITY

E20 - 327 PANELS

HIGH EFFICIENCY

Generate more energy per square foot

E-Series commercial panels convert more sunlight to electricity producing 36% more power per panel, and 60% more energy per square foot

HIGH ENERGY PRODUCTION?

Produce more energy per rated watt

More energy to power your operations. High year one performance delivers 7-9% more energy per rated watt. 3 This advantage increases over time, producing 20% more energy over the first 25 years to meet

www.sunpowercorp.com

Building Overview Information | Existing System Mechanical Depth Location | Energy | Plausibility Acoustical Breadth Potential Solutions | Conclusion

Electrical Breadth

Energy | Cost | Plausibility Conclusion

Solar Panels

Energy

1 BTU = 0.293 Watt-Hours

Solar Panels

(312 modules) *
$$(327 \frac{Watts}{Module-hour})$$
 * $(10 \frac{hours}{Day})$ * $(200 \frac{days}{year})$
= 204,048,000 $\frac{Watt-Hour}{year}$

Building

$$\left(\frac{3,209,342,000\ BTU}{year}\right) * \left(\frac{0.293\ Watt-hour}{BTU}\right) = 940,337,206\ Watt-Hour/year$$

$$\frac{204,048,000 Watt-hour}{940,337,206 Watt-hour}$$
 = 22% of yearly energy

Paula K. Schuller

SUNPOWER

MORE ENERGY, FOR LIFE.

Captures more sunlight and generates more power than conventional panels.

· 20.4% efficiency

Delivers excellent performance in real world conditions, such as high temperatures, clouds and low light. 1,2,3

Commercial grade

Optimized to maximize returns and energy production, the E-Series panel is a bankable solution for commercial solar applications.

Maxeon® Solar Cells: Fundamentally better. Engineered for performance, designed for reliability.

Engineered for peace of mind Designed to deliver consistent, trouble-free

energy over a very long lifetime. 4.5

Designed for reliability

The SunPower Maxeon Solar Cell is the only cell built on a solid copper foundation. Virtually impervious to the corrosion and cracking that degrade Conventional

#1 Ranked in Fraunhofer durability test. 10 100% power maintained in Atlas 25+ comprehensive PVDI Durability test.11

HIGH PERFORMANCE & EXCELLENT RELIABILITY

E-SERIES COMMERCIAL SOLAR PANEL

E20 - 327 PANELS

HIGH EFFICIENCY

Generate more energy per square foot

E-Series commercial panels convert more sunlight to electricity producing 36% more power per panel, and 60% more energy per square foot

HIGH ENERGY PRODUCTION?

Produce more energy per rated watt

More energy to power your operations. High year one performance delivers 7-9% more energy per rated watt. ³ This advantage increases over time, producing 20% more energy over the first 25 years to meet

www.sunpowercorp.com

Building Overview Information | Existing System Mechanical Depth Location | Energy | Plausibility Acoustical Breadth Potential Solutions | Conclusion

Electrical Breadth

Energy | Cost | Plausibility Conclusion

Solar Panel Life Span 25 to 30 years

Solar Panels Cost

(312 modules) *
$$(327 \frac{Watts}{Module-hour})$$
 * $(10 \frac{hours}{Day})$ * $(200 \frac{days}{year})$
= 204,048,000 $\frac{Watt-Hour}{year}$

Installation Cost 1 Watt = \$7

(312 modules) * (327
$$\frac{Watts}{Module-hour}$$
) = 102,024 Watts

\$7 * (102,024 Watts) = \$714,168

$$(204,048,000 \frac{Watts}{hour}) * 12 (\frac{cents}{KWatt-hour}) * (\frac{1 KWatt}{1000 Watts}) * (\frac{$1}{100 cents}) =$$
 \$24,485 savings per year

$$\frac{\$714,168 (instalation)}{\$24,485 (savings)} = 29 \text{ years payback}$$

SUNPOWER

E-SERIES COMMERCIAL SOLAR PANEL

MORE ENERGY. FOR LIFE:

E20 - 327 PANELS

Delivers excellent performance in real world conditions, such as high temperatures, clouds and low light. 1,2

Captures more sunlight and generates more

power than conventional panels.

Commercial grade

· 20.4% efficiency

Optimized to maximize returns and energy production, the E-Series panel is a bankable

Maxeon® Solar Cells: Fundamentally better. Engineered for performance, designed for reliability

Engineered for peace of mind

Designed to deliver consistent, trouble-free energy over a very long lifetime. 4.5

Designed for reliability

The SunPower Maxeon Solar Cell is the only cell built on a solid copper foundation. Virtually impervious to the corrosion and cracking that degrade Conventional

#1 Ranked in Fraunhofer durability test. 10 100% power maintained in Atlas 25+ comprehensive PVDI Durability test.11

HIGH EFFICIENCY

Generate more energy per square foot

E-Series commercial panels convert more sunlight to electricity producing 36% more power per panel, and 60% more energy per square foot

HIGH ENERGY PRODUCTION?

Produce more energy per rated watt

More energy to power your operations. High year one performance delivers 7-9% more energy per rated watt. 3 This advantage increases over time, producing 20% more energy over the first 25 years to meet

Anti-Reflective Glass

Building Overview
Information | Existing System
Mechanical Depth
Location | Energy | Plausibility
Acoustical Breadth
Potential Solutions | Conclusion

Electrical Breadth

Energy | Cost | **Plausibility**Conclusion

Solar Panels

312 Modules

Saves 22% of Annual Energy

Saves \$24,485 Annually

Payback = 29 Years

Note: The roof would have to be analyzed in order to account for the added dead load of the solar panels

(41 lbs./module) *(312 modules) =12,792 lbs.

of dead weight added to the roof

Building Overview
Information | Existing System
Mechanical Depth
Location | Energy | Plausibility
Acoustical Breadth
Potential Solutions | Conclusion
Electrical Breadth
Energy | Cost | Plausibility

Conclusion

Conclusions

- ➢ Geothermal System
 Would reduce total energy
 - Not Plausible
- ➤ Noise Concerns

 Best option would be a vibration isolation base
- Solar PanelsWould reduce total energy
 - Plausible if roof can support added dead load

Paula K. Schuller

Design Team

Architects	Bostwick Design Partnership
Structural	Atlantic Engineering Services
Engineers	
MEP Engineers	CJL Engineering
Civil Engineers	Stanford Surveying and Engineering,
	P.C.
Landscape	Dahlkemper Landscape Architects
Architects	and Contractors

Building Overview Information | Existing System Mechanical Depth Location | Energy | Plausibility Acoustical Breadth Potential Solutions | Conclusion Electrical Breadth Energy | Cost | Plausibility Conclusion

SUNPOWER

MORE ENERGY. FOR LIFE?

E-SERIES COMMERCIAL SOLAR PANELS

· 20.4% efficiency

Captures more sunlight and generates more power than conventional panels.

High performance

Delivers excellent performance in real world conditions, such as high temperatures, clouds and low light, 1,2,3

Commercial grade

Optimized to maximize returns and energy production, the E-Series panel is a bankable solution for commercial solar applications.

Maxeon® Solar Cells: Fundamentally better. Engineered for performance, designed for reliability.

Engineered for peace of mind

Designed to deliver consistent, trouble-free energy over a very long lifetime.4.5

Designed for reliability

Paula K. Schuller

The SunPower Maxeon Solar Cell is the only cell built on a solid copper foundation. Virtually impervious to the corrosion and cracking that degrade Conventional

#1 Ranked in Fraunhofer durability test, 10 100% power maintained in Atlas 25+ comprehensive PVDI Durability test.11

HIGH PERFORMANCE & EXCELLENT RELIABILITY

E20 - 327 PANELS

HIGH EFFICIENCY

Generate more energy per square foot

E-Series commercial panels convert more sunlight to electricity producing 36% more power per panel, 1 and 60% more energy per square foot over 25 years. 3,4

HIGH ENERGY PRODUCTION?

Produce more energy per rated watt

More energy to power your operations. High year one performance delivers 7-9% more energy per rated watt.3 This advantage increases over time, producing 20% more energy over the first 25 years to meet

www.sunpowercorp.com

SUNPOWER

MORE ENERGY, FOR LIFE

E-SERIES COMMERCIAL SOLAR PANELS

SUNPOWER OFFERS THE BEST COMBINED POWER AND PRODUCT WARRANTY

ELECT	RICAL DATA		0
	E20-327-COM	E19-310-COM	Temperatu
Nominal Power ¹² (Pnom)	327 W	310 W	
Power Tolerance	+5/-3%	+5/-3%	Max load
Avg. Panel Efficiency ¹³	20.4%	19.3%	Impact res
Rated Voltage (Vmpp)	54.7 V	54.7 V	Appearan
Rated Current (Impp)	5.98 A	5.67 A	Solar Cell
Open-Circuit Voltage (Voc)	64.9 V	64.4 V	Tempered
Short-Circuit Current (Isc)	6.46 A	6.05 A	Junction B
Max. System Voltage	1000 V UL	& 1000 V IEC	Connector
Maximum Series Fuse		0 A	Frame
Power Temp Coef.	-0.38	8% / °C	Weight
Voltage Temp Coef.		5 mV / °C	
Current Temp Coef.		nA/°C	F. 188.2
Concession of the Contestion o			Standard

- 1 All comparisons are SPR-E20-327 vs. a representative conventional panel:
- 240W, approx. 1.6 m², 15% efficiency. PVEvolution Labs "SunPower Shading Study," Feb 2013.
- 3 Typically 7-9% more energy per watt, BEW/DNV Engineering "SunPower
- 4 SunPower 0.25%/yr degradation vs. 1.0%/yr conv. panel. Campeau, Z. et al. "SunPower Module Degradation Rate," SunPower white paper, Feb 2013; Jordan, Dirk "SunPower Test Report," NREL, Oct 2012.
- 5 "SunPower Module 40-Year Useful Life" SunPower white paper, Feb 2013. Useful life is 99 out of 100 panels operating at more than 70% of rated
- 6 Out of all 2600 panels listed in Photon International, Feb 2012.
- 7 8% more energy than the average of the top 10 panel companies tested in 2012 (151 panels, 102 companies), Photon International, March 2013. 8 Compared with the top 15 manufacturers. SunPower Warranty Review, Feb 2013.
- 9 Some exclusions apply. See warranty for details.
- 10 5 of top 8 panel manufacturers were tested by Fraunhofer ISE, "PV Module Durability Initiative Public Report," Feb 2013.
- 1 Compared with the non-stress-tested control panel. Atlas 25+ Durability test report, Feb 2013.
- 12 Standard Test Conditions (1000 W/m2 irradiance, AM 1.5, 25° C). 13 Based on average of measured power values during production

Traditional Warranty 0 5 10 15 20 25

Combined Power and Product defect 25 year coverage that includes panel replacement costs.

OPERATING	G CONDITION AND MECHANICAL DATA	
ature	- 40°F to +185°F (- 40°C to +85°C)	
d	Wind: 50 psf, 2400 Pa, 245 kg/m² front & back Snow: 112 psf, 5400 Pa, 550 kg/m² front	
esistance	1 inch (25mm) diameter hail at 52 mph (23 m/s).	
once	Class B	
ells	96 Monocrystalline Maxeon Gen II	
ed Glass	High transmission tempered Anti-Reflective	
Box	IP-65 Rated	
ors	MC4 Compatible Connectors	
	Class 2 silver anodized	
	41 lbs (18.6 kg)	

	TESTS AND CERTIFICATIONS
andard tests	UL1703, IEC 61215, IEC 61730
ality tests	ISO 9001:2008, ISO 14001:2004
S Compliance	RoHS, OHSAS 18001:2007, lead free
nmonia test	IEC 62716
It Spray test	IEC 61701 (passed maximum severity)
test	Potential-Induced Degradation free: 1000V ¹⁰
ailable listings	UL, CEC, CSA, TUV, JET, KEMCO, MCS, FSEC

See http://www.sunpowercorp.com/facts for more reference information

For more details, see extended datasheet: www.sunpowercorp.com/datasheets. Read safety and installation instructions before using this product. May 2013 SunPower Corporation. All rights reserved. SUNPOWER, the SUNPOWER logo, MAXEON, MORE ENERGY. FOR LIFE., and SIGNATURE are trademarks or registered trademarks of SunPower Corporation. Specifications included in this datasheet are subject to change without notice.

Building Overview
Information | Existing System
Mechanical Depth
Location | Energy | Plausibility
Acoustical Breadth
Potential Solutions | Conclusion
Electrical Breadth
Energy | Cost | Plausibility
Conclusion

```
1000V DC System
327 Solar Panel Sun Power Model
SMA 20.000 W inverter
                                                      STC = 25°C Assume Annual Low Temp of -26°C
V_{oc} = 64.9 \text{ V} T= 176.6 mv/°C
\Delta T = -51^{\circ}C
\frac{1000V}{64.9 \, V/mod} = 15.4 \, modules \rightarrow 15
                                            AV = \left(-0.1766 \frac{V}{^{\circ}C}\right) * (-51^{\circ}C) = 9 \text{ V}
                                               Max V_{oc} = 64.9 V + 9 V = 73.9 V
                                        \frac{1000V}{73.9 \, V/mod} = 13.5 \, modules/string \rightarrow 13
                           1 \ string * (13 \ modules) * \left(0.327 \frac{\text{kw}}{\text{module}}\right) = 4.25 \ \text{kw/string}
                                  \frac{25 \, kw/mv}{4.25 \, / string} = 5.56 \, string/inverter \rightarrow 6 \, strings
                                              6 * 4.24 \ kw = \left(\frac{25.5 \ \text{kw}}{20 \ \text{kw}}\right) = 1.26
                                          6 strings * (13 modules) = 78 modules
                                        \frac{315 \max modules}{78 \ module / \ inverter} = 4.04 \ inverters \rightarrow 4
```

4 inverters * (78 modules) = 312 modules

6 strings of 13 modules

4 20kw inverter

312 Total Modules

25.1 kw DC

(312 modules) * (327 $\frac{Watts}{Module-hour}$) * (10 $\frac{hours}{Dav}$) * (200 $\frac{days}{vear}$) 1 BTU = 0.293 Watt-Hours = 204,048,000 $\frac{Watt-Hour}{year}$ Solar Panels (312 modules) * (327 $\frac{Watts}{Module-hour}$) * (10 $\frac{hours}{Day}$) * (200 $\frac{days}{vear}$) Installation Cost 1 Watt = \$7 = 204,048,000 $\frac{Watt-Hour}{vear}$ (312 modules) * (327 $\frac{Watts}{Module-hour}$) = 102,024 Watts \$7 * (102,024 Watts) = \$714,168 Building $(204,048,000 \frac{Watts}{hour}) * 12 (\frac{cents}{KWatt-hour}) * (\frac{1 KWatt}{1000 Watts}) * (\frac{$1}{100 cents}) = $24,485$ savings per year $\left(\frac{3,209,342,000\,BTU}{vear}\right) * \left(\frac{0.293\,Watt-hour}{BTU}\right) = 940,337,206\,Watt-Hour/year$ 204,048,000 Watt-hour 940,337,206 Watt-hour = 22% of yearly energy \$714,168 (instalation) \$24,485 (savings) = 29 years payback

(41 lbs./module) *(312 modules) =12,792 lbs.

of dead weight added

to the roof